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Equations of motion and boundary conditions for a flowing granular material, 
developed in earlier publications, are here extended to allow for drag forces resulting 
from relative motion of the material and interstitial air. These are solved for fully 
developed flow down an inclined plane, through which a constant flow of air passes 
upward. The results are compared with measurements from an experimental aerated 
chute, in which the inclination of the chute, the flow rate of the granular material, 
and the flow of air are all varied. Using parameter values from independent 
measurements, as far as possible, the theory is found to give a good qualitative 
account of the observed behaviour. With a reasonable assigned value for the one 
parameter that cannot be determined independently the quantitative agreement is 
also satisfactory. 

1. Introduction 
Two previous papers, Johnson & Jackson (1987) and Johnson, Nott & Jackson 

(1990), have explored a suggestion of Savage (1982) for a simple method of 
incorporating frictional effects into a kinetic theory model of the mechanical 
behaviour of granular materials. The idea is simply to add to the stress given by 
kinetic theory a separate contribution determined from one or other of the 
rheological models in the literature of soil mechanics, since these are expected to 
represent the behaviour a t  high bulk densities, where there are multiple, long-term 
contacts between a particle and its neighbours. Clearly this is a very naive way of 
attempting to treat the behaviour of a granular material over the whole range of bulk 
densities, but it should give a stress which behaves in the right way at high and low 
values of the bulk density, and it may catch important aspects of the behaviour a t  
intermediate densities, at least qualitatively. 

Johnson & Jackson (1987) applied this model to the plane shearing of a horizontal 
layer of granular material between plates, compared their predictions with existing 
experimental results, and were able to show how a layer of non-shearing material 
occupies the lower part of the space between the plates in most circumstances. 
Johnson et al. (1990) solved the model equations for fully developed flow under 
gravity down an inclined plane, and compared their predictions with an extensive set 
of experiments on inclined chutes with base plates of different degrees of roughness. 

The present paper reports a further extension of this investigation to the case of 
a chute equipped with a porous base plate, through which air can be injected. This 
relieves the gravitational stress that builds up within the layer, and therefore makes 
fully developed flow possible a t  lower inclinations than could otherwise be achieved. 
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A comparison of predictions with experiments on aerated chutes therefore extends 
the range of conditions over which the consequences of the theory can be tested. In 
particular, it allows us to study in greater detail the interplay between frictional and 
collisional components of thc stress. In  addition, aerated chutes are of technical 
importance, as they am used to  transport particulate materials over moderate 
horizontal distances. For this purpose a minor extension of the model equations is 
needed to take account of the drag force exerted on the particles by the air flowing 
through the interstices. This is described in the next section, after which results of 
the experiments are presented and compared with the predicted behaviour. 

2. Mechanical equations for the aerated granular material 
The rheological description of the granular material in motion is the same as that 

used earlier by Johnson et al. (1990). The only additional mechanical feature of the 
present case is the existence of a gas filling the interstices between the particles, and 
the effect of this will be assumed to be limited to a drag force exerted between the 
two phases, dependent on their local relative velocity. Modifications of the collisions 
between particles due to the presence of the gas will be neglected, as will any 
generation of pseudothermal energy due to  the relative motion of gas and particles. 
Then the equations of motion are as follows. Each phase satisfies a continuity 
equation 

(1) 

where the first refers to the particle phase and the second to the gas, v denotes the 
volume fraction occupied by particles, and u and ug are the velocities of particles and 
gas, respectively. The momentum equation for the particle phase is 

av a(1-V) 
-+V*(vu) = 0, -+V.[(l-v)ug] = 0, 
at at 

Du 
Dt p v-=pppvg+fgs-v.tJ: 

where pp is the intrinsic density of the particulate material, g is the specific gravity 
force vector, fgs is the interaction force, per unit total volume, exerted on the 
particles by the gas, and t~ is the particle phase stress tensor. The material derivative 
is, of course, taken following the particle motion. 

Since the density of the gas is much smaller than that of the solid material we omit 
inertial and gravitational terms from the gas momentum balance, and also neglect 
shear stresses in the gas phase, other than those associated with the small-scale 
motion around the particles, which contribute to the drag force. Thus, the gas 
momentum balance reduces to 

0 = -f,,-Up: (3) 

where p is the gas pressure. In these equations all variables represent local averages 
over regions large compared with the particle size. 

The particle-phase stress tensor depends quite strongly on the particle tem- 
perature, defined by T = +2, where v 2  denotes the mean-square fluctuation of the 
particle velocity about its local average value. T must then be determined by 
solution of an equation of balance for the kinetic energy of this pseudothermal 
motion : 

- oc : vu -I zppv- = -v.qp, 
3 DT 

Dt (4) 
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Here qpt denotes the flux of pseudothermal energy, I denotes its rate of dissipation, 
per unit total volume, in inelastic collisions, and cc is the collisional part of the 
particle phase stress (see below). 

As in the work of Johnson et al. (1990) we attempt to account for contributions to 
the particle-phase stress from both brief collisions between pairs of particles, and 
longcr term sliding and rolling contacts, by the crude device of combining these 
contributions additively, with each calculated as though it acted alone. This proved 
quite successful in representing the behaviour of a chute without aeration. Thus, we 
write 

tT = cc + tTp (5) 

For the collisional contribution aC, the pseudo-thermal energy flux qpt, and the 
dissipation function I we use expressions derived by Lun et al. (1984) from dense-gas 
kinetic theory, which are correct when the coefficient of restitution for collisions 
between pairs of particles is close to unity. These are simplified, as suggested by 
Jenkins (1987), by replacing the coefficient of restitution e by unity everywhere 
excFpt in the dissipation function I ,  which is itself of order 1 - e .  Jenkins argues that 
this should be done to maintain consistency in orders of approximation, and in 
practice it scarcely changes the results of the computations. Thus 

and 

where 

cc = [PpvT(1+4vgo)-pu,V.u]/ 

--9(2 +a) - (1  + @go)2+ e.] s: [: 
(l+~vgo)2+-(vgo)2]VT 512 

25n 

5m ( T/n)i 256pv2g0 75m (T/n)i 
6 4 8  ’ 

7 p b =  5n , A =  
’= 16d2 

(7)  

(9) 

S denotes the rate of deformation tensor for the velocity field u, and rn and d are the 
mass and diameter of individual particles, respectively. The radial distribution 
function go is chosen as 

1 

(1  - ( v/vo)f)’  90 = 

where vo is the volume fraction of solids at random close packing, taken to be 0.65 
in this work. This form constrains the solids fraction to remain smaller than vo. The 
dimensionless constant a in (6) is assigned the value 2. These choices for go and a 
ensure consistency with earlier work on chute flow (Johnson et al. 1990). The form 
(10) for go ensures that the stress will diverge as the volume fraction approaches close 
packing, thus preventing v from assuming an unphysically large value. For 
consistency with the kinetic theory of dilute gases it can be shown that a should tend 
to unity when ep + 1 and v + 0, but this would give rather low values for the stress 
at more realistic volume fractions. 

The literature of soil mechanics contains many proposed expressions for q, the 
‘frictional ’ contribution to the stress but fortunately, for the case of plane shear 
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considered here, they all reduce to the Coulomb relation T f  = Nf sin 4, where T f  and 
Nf are the shear stress and the normal stress, respectively, on the planes of shear, and 
4 is a property of the granular material called its angle of internal friction. The 
volume fraction u and the normal stress Nf are related, with the stress increasing 
rapidly and diverging as u + uo. Following Johnson et al. (1990) we take 

= o  for v ,< ul,  (11) 

where Fr,  P and N are constants characteristic of the material. This gives a vanishing 
frictional contribution to the stress for sufficiently small values of u. 

To complete the closure of the equations of motion an expression is needed for the 
drag force f g s ,  and this is taken as a weighted combination of the well-known Ergun 
and Richardson-Zaki equations, the former of which is well established for flow of 
gas through a packed bed of high solid volume fraction, while the latter has the right 
behaviour a t  small values of the volume fraction. Thus 

The Richardson-Zaki exponent n depends on the Reynolds number of a particle at 
the velocity ut of free fall in the gas. In  this work ut = 7.5 m/s and n = 3.4, 
corresponding to the 1 mm glass beads used in the experiments. The weighting factor 
w is a function of v chosen so that w + 0 when u + 0, while w approaches unity as 
u + vo ; specifically we took 

w=exp(-loT),  uo-u 

with which the transition from the Ergun to the Richardson-Zaki form occurs rather 
sharply around u = 0.5. 

The above equations are subject to boundary conditions at solid surfaces (in this 
case the base of the chute) and a t  free boundaries beyond which the particle 
concentration vanishes. At the solid boundary the conditions on the particle velocity 
and the particle temperature formulated by Johnson et al. (1990) can be taken over 
unchanged : 

and 

Here n denotes the unit normal to the solid boundary, drawn into the particulate 
material, usl is the slip velocity a t  the wall, defined as u-u,, where u, is the velocity 
of the wall, e, is the coefficient of restitution for collisions between particles and the 
wall, and 6 is the angle of friction for particulate material sliding over the wall. The 
factor #', which we call the specularity coefficient, is a measure of the average 
fraction of tangential momentum of a particle lost in a collision with the wall. It 
approaches zero when the wall is perfectly smooth and the rebound of particles is 
specular, but approaches unity for perfectly diffuse rebounds a t  a rough wall. In  (14) 
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the second and third terms represent the frictional force opposing sliding over the 
wall, and the rate of transfer of tangential momentum to the wall during collisions, 
respectively. In (15) the first term on the right-hand side represents the rate of 
working of collisional stresses at the wall, while the second represents the rate of 
dissipation of pseudo-thermal energy in inelastic collisions between particles and the 
wall. 

At a free surface of the particulate material the normal flux of pseudothermal 
energy must vanish, of course: 

and the particle phase stress cr should also be required to vanish. However, this 
requires that v + 0 at the surface and, when the bulk of the particle assembly has high 
density, this leads to a very steep gradient of v immediately adjacent to the surface, 
and consequent problems of stiffness in solving the equations of motion numerically. 
As a practical matter, therefore, we avoid this by writing a force balance for the 
uppermost layer of particles separately, then apply our continuum equations to the 
rest of the material below this layer. For the continuum equations, therefore, the 
stress at  the upper boundary of the domain of integration is the (non-zero) stress 
below the topmost layer of particles. Johnson et al. (1990) showed that the relation 
between this and the weight of the particles in the topmost layer is 

(17) 

which follows from an assumption that the average area per particle in this layer is 
approximately d2 at random close packing. This method of handling the free-surface 
boundary condition can be justified a posteriori by comparing computed results with 
predictions of more elaborate computations which do not even assume the existence 
of a sharply defined upper surface (Johnson et al. 1990). 

For the particular case of fully developed flow under gravity down an aerated 
chute, inclined at  an angle 8 to the horizontal, the equations can be reduced to 
explicit dimensionless forms as follows. The component of the momentum balance 
normal to the base of the chute is 

neq,, = 0 (16) 

n - CT = $pp d (v /v ,$g 

the component of momentum balance parallel to the base is 

f2T*i du* 
((Htan6)ld): dY 

+ 
and the balance of pseudothermal energy is 

[fa T *iT] dT* + H tan 6 f2 T *a (=) du* - ( f)Y5 T *; = 0. 
dY 

In the above equations H is the depth of the flowing layer of particulate material and 
the coordinate y is measured normal to the base of the chute from an origin in the 
base. A dimensionless coordinate Y is defined as y / H ,  and other dimensionless 
variables, distinguished by stars, are defined as follows : 

u * =  T*=-. T N $ =  Ne . * -  f g s  

(gH sin 6)i’ gd sin 0 ’ Ppgd cos e fgs  - pp 9 cos 6 .  
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The dimensionless drag force is then given by 
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where u: = ut/umf and 

The boundary condition (14) a t  the chute base takes the form 

(at Y = 0) ,  
fzT*t du* N:[sinq5-tan6] -+ 

( H  tan B)/d)f dY tan 6 

(22) 
while the condition (15) becomes 

- $'tan6u*2 (at  Y =  0). (23) 
4v0f3 dT* H 

n2/3vg0 dY 

The normal and tangential components of the stress boundary condition (17) at the 
free surface can be written 

fl T * + N F  = ~n(v/v,); (at Y = 1 )  (24) 

and 
fzT*: du* Nts in$  -+ = in (v/vo)i  (at Y = 11, 

( ( H  tan 6 ) / d ) i  dY tan 6 

while the thermal flux condition is 

-- - 0 dT* 
dY 

(at Y = 1) .  

In  the above equations fl, f2, f 3  and f 5  denote the following dimensionless functions of 
V :  

fl ( v )  = 4 1  +4vg0), 

(2 + n)5nf 8(2 + a)v' go 
( 1 + gvgo)2 + 

28890 15d  ' f 2 ( 4  = 

2 5 d  4 
(1  + +-I v2 go, 

n2 
f 3  (v) = 128g, 

12 

In  formulating the above equations for chute flow only the component of the 
gas-particle drag force normal to the plane of the chute has been taken into account ; 
in other words, it has effectively been assumed that the component of the velocity 
of the gas in the direction of motion of the solid material is everywhere equal to  the 
velocity of the particles. This cannot be entirely true, since the air emerges from the 
base of the chute with a vanishing value for this component of velocity, and the air 
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above the free surface of the moving layer of particles also exerts some drag a t  the 
surface. However, Nott (1991) has shown that thesc effccts would be expected to  be 
negligibly small for the systems studied here. 

3. Method of solution 
Before embarking on numerical solution it is useful to reduce the order of the 

system by intcgrating each of (19) and (20) once with respect to Y.  Incorporating the 
frcc-surface boundary conditions (24) and (25) we thus obtain 

These two equations then replace (19), (20), (24) and (25). The system of equations 
(20), (27) and (28), together with the boundary conditions (22), (23) and (26), is then 
solved by a finite-difference method. The interval [0,1] for Y is divided into N equal 
sub-intervals, so that  there are N -  1 interior points and the two boundary points. 
The derivatives are then replaced by finite-difference approximations with errors of 
O(AY2) ,  using central differences at the interior points and forward or backward 
differences at the boundary points. The integrals in (27) and (28) are approximated 
using Simpson's rule to maintain the O ( A Y 2 )  truncation error. The resulting set of 
algebraic equations for the values of the dependent variables at the grid points is 
solved by the Newton-Raphson method. Further details of this procedure are given 
by Nott (1991). This procedure converged much more rapidly than that used earlier 
by Johnson et al. (1990). I n  practice N = 31 proved adequate for all the cases studied. 

The Newton-Raphson method has quadratic convergence from a sufficiently good 
starting point, but often fails to converge if the starting approximation is poor. Thus, 
once a solution has been obtained for one pair of values of the parameters 6' and H l d ,  
i t  is best to continue this by successive small changes in one or other of these 
parameters. In particular, by generating solutions for a sequence of closely spaced 
values of H l d ,  we can find how the mass flow rate varies with the depth of the flowing 
layer on a chute of given inclination. This method of continuation fails if a limit point 
or a bifurcation point is encountered, where the Jacobian needed in the 
Newton-Raphson procedure vanishes. This can occur in systems of this sort, so the 
solutions were actually continued using the AUTO software package (Doedel 1986), 
which uses arclength along the branch of solutions being followed as a continuation 
parameter, and is capable of following the branch through singular points where the 
,Jacobian vanishes. 

4. Experimental apparatus and procedure 
The granular material used in this work consists of glass beads of 1 mm nominal 

diameter. These are spherical in shape and the manufacturer's tolerance on the 
diameter is 10 %, so they resemble closely the identical, hard spheres treated by the 
theory of Lun et al. (1984). 

The chute is a modified version of that  used by Johnson et al. (1990), the main 
difference being the replacement of the base plate by a porous plate backed by a 
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FIGURE 1. Overall arrangement of the experimental apparatus. 

windbox, as indicated in figure 1, so that the flowing material can be aerated. The 
flowing material is recycled to the feed hopper using a rotary air lock and a 
pneumatic lift line, as shown. The chute is 135cm long and 6 c m  wide, and is 
bounded laterally by Plexiglas walls. Clean, dry air for aeration is provided by a 
blower with a maximum volumetric delivery of 2000 ft3/min and a shut off head of 
18 in. of water. 

The most critical aspect of the design of the apparatus is the choice of a suitable 
porous plate for the chute base. This must be stiff enough to support the weight of 
the particulate material without flexing appreciably, and i t  must have absolutely 
uniform permeability to  the passage of gas, so that the air is uniformly distributed 
over the length and width of the chute. After a number of unsuccessful trials i t  was 
found that the properties required could be found in certain porous plastic sheets. 
For the present purpose a in. thick sheet of porous polypropylene was found to be 
most suitable. The average pore size is 125 pm and the material is more rigid than 
others that were tested, giving a higher coefficient of restitution e,. Also the surface 
is quite smooth, so the angle of wall friction 6 is not too large. 

The depth of the flowing layer is determined with a small, vertical impact plate 
that can be positioned above the surface of the material with a machinist’s dial 
micrometer. It is lowered until particles can be seen to  be hitting its lower edge. 
Provision is also made for measuring the mass holdup; that is, the mass of material 
per unit area of the chute base in the fully developed flowing layer. This is found by 
lowering two plates rapidly and simultaneously into the material so as to stop the 
flow, then weighing the material trapped between them. The mass flow rate is 
measured by collecting and weighing the material leaving the end of the chute in a 
measured time interval. 

The behaviour of the chute is found to be quite sensitive to its angle of inclination, 
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and this is measured by a vernier protractor clamped to the chute and supporting a 
sensitive bubble level. This arrangement can determine the inclination within 0.05'. 
The downstream end of the chute is supported by a wire span attached to a ratchet 
winch, so the inclination can be changed by winching this end up or down. 

Provision was made for measuring velocity profiles using a fibre-optic probe, as 
described by Johnson et al. (1990). The measurements were repeatable within 5%, 
but the velocity profiles measured are those of material in contact with the sidewall 
of the chute. They are therefore of limited value, and are not reported here. (They 
can, however, be found in Nott 1991.) The probe can also be used to measure the 
lateral profile of velocity of particles in the free upper surface, and two such profiles 
are shown in figure 6. 

The material is fed from the storage hopper to the upper end of the chute in two 
stages. It first falls freely from the hopper exit into a pre-chute chamber, seen in 
figure 1, and this flow is controlled by a gate valve at the hopper exit. Flow from the 
pre-chute chamber into the chute proper can then be controlled separately by a slide 
valve a t  the exit from the chamber. This arrangement was introduced by Johnson 
et al. as a means of controlling the condition of the granular material entering the 
chute. If the slide valve is opened wide and the flow of material controlled entirely 
by the gate valve at the hopper exit, the material enters the chute in an energetic, 
low-density state after falling freely then bouncing on the base of the pre-chute 
chamber. On the other hand, if the flow is controlled with the slide valve, using the 
gate valve only to keep the pre-chute chamber full of granular material, the material 
enters the chute in a dense, low-energy state. With a smooth chute base Johnson 
et al. found that different, apparently fully developed flow regimes could be generated 
by using the two different methods of feeding the material. With a rougher base, on 
the other hand, the lower-density flowing layer obtained by controlling the flow at 
the hopper exit usually collapsed to a high-density layer before leaving the chute, 
and this appeared to be identical with the layer generated by the other feed method. 
It was therefore speculated that the loose, high-energy flows are often merely 
extended transients, even in cases where they survive for the restricted distance 
along this particular chute. With the porous plastic chute base used in the present 
work, these loose flows invariably collapsed into denser, slower moving layers within 
the length of the chute. In this case, therefore, it appears that only the dense flows 
correspond to fully developed conditions, so only results using the dense mode of 
feeding the chute, with control of flow by the slide valve at the exit of the pre-chute 
chamber, are reported. 

For each chute inclination and flow rate the moving layer has an entry length, in 
which the depth increases or decreases, depending on the conditions, and an exit 
length in which the depth decreases on approaching the end of the chute. 
Measurements of depth, mass holdup, and velocity profile must, of course, be made 
in the section between these where the flow is ostensibly fully developed, provided 
such a section exists. This poses a limitation on the range of conditions that can be 
explored - for example, the exit length increases as the flow rate is decreased, and 
eventually eliminates the fully developed section. A longer chute would be desirable 
to ease this constraint. The range of flow rates that can be investigated is also 
constrained by the limited capacity of the pneumatic lift that returns the particles 
to the feed hopper. In  the present work a number of runs are taken at flow rates in 
excess of this, so their duration is limited by depletion of the contents of the feed 
hopper. However, this is not serious, since steady flow conditions appear to be 
established quickly at the high flow rates in question. 
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5. Selection of parameter values 
The theory contains a number of parameters characteristic of the particulate 

material and the solid boundaries with which i t  makes contact, together with the 
quantities 8, v* and H / d  which depend on the experimental conditions. In principle, 
the values of the material parameters can be determined by independent 
experiments, and this was attempted in the present case. 

The angle of internal friction q5 was measured by shearing a sample of the material 
under a defined normal load in a standard 'Jenike' shear cell tester, and was found 
to be 28.5". The angle of friction 6 between the material and the base of the chute was 
found by loading the chute at zero angle of inclination with a layer of the beads, then 
slowly increasing the inclination until the layer just began to slide steadily down the 
chute. The corresponding angle of inclination was taken as an estimate of 6. In 
practice, it proved difficult to identify 6 accurately by this method, as there was a 
tendency for individual particles to roll (rather than slide) down the chute before the 
layer as a whole began to slide. However, sliding certainly began at an inclination 
between 13' and 15', so a value of 14' was assigned to 8. 

The coefficients of restitution, e and e,, were determined by dropping individual 
beads from a known height onto a sheet of glass or a piece of the porous 
polypropylene sheet. The required coefficients were then found by comparing the 
height of fall with a measured height of rebound. This measurement was not entirely 
satisfactory. For repeated drops from the same initial height there was quite a 
wide distribution of rebound heights, either because of rotation, or as a result of 
inhomogeneity in the sheet of material from which the particles bounce. Also, it is 
well established that coefficients of restitution are not constants, but depend quite 
strongly on the relative velocity a t  impact. It would, therefore, be most appropriate 
to measure them at impact velocities typical of collisions occurring in the flowing 
layer on the chute. But these are expected to be of the order of 10 cm/s, which is 
achieved only with a very small drop height, and correspondingly large percentage 
error in measuring the rebound height. For practical reasons, therefore, the rebound 
experiments were carried out with a much larger drop height (68 cm), giving 
estimates of 0.8 and 0.5 for e and e,, respectively. 

The specularity factor 4' is determined by the nature of surface irregularities of the 
chute base on a scale comparable with the particle size. It is, therefore, distinct from 
6, which measures the tangential force exerted between the base and particles sliding 
on it, and e,, which measures the loss in kinetic energy of a particle that collides with 
the base. In principle, an estimate of q5' could be obtained by measuring the 
scattering of rebound directions for particles impacting the base at  various angles of 
incidence, but the measurements would be tedious and difficult to perform a t  the low 
impact velocities which are typical for a base in contact with a flowing layer of 
particles. Thus our theoretical predictions were made for more than one value of this 
parameter t o  check the sensitivity of the results, and other calculations were carried 
out specifically to explore parameter sensitivity, as described below. Though q5' can 
take any value between zero and unity, and this whole range is covered in our 
exploration of sensitivity (see figure 5 ) ,  in practice values between 0.2 and 0.6, 
depending on the nature of the chute base, seem to give predictions that match 
experimental observations for the bases used in this and earlier work. 

The dependence of the frictional normal stress Np on bulk density has not been 
measured in detail for the type of material used here, though results of Scarlett & 
Todd (1969) suggest that it is negligible below some volume fraction vl and increases 
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FIGURE 2. Mass flow rate versus H / d  for the rough-based chute without aeration using 1 mm 
glass beads. 4 = 2 8 9 ,  S = 15', e = 0.91, 8 = 18'. Fr, P and N as in table 1. 

d 
P P  

# 
6 
e 
e w  
Fr 
P 
N 
4' 

0.1 cm 
2.9 g/cma 
28.5' 
14'kl' I 

0.8+0.1 
0.4-0.55 (0.5 chosen) 
0.5 g/cm s2 
2 
5 

not measured 

TABLE 1 .  Experimental parameter values 

very rapidly as v approaches vo. The simple algebraic form shown in (1 1) above has 
been adopted in the present work, with v 1  = 0.5, Fr = 0.5 g/cm s2, P = 2 and N = 5. 
This is the same as the form used by Johnson et.al. (1990) in treating the unaerated 
chute. 

The above parameter values, together with the size and intrinsic density of the 
glass beads, are summarized in table 1. 

The sensitivity of the solution to the choice of parameter values is well illustrated 
by the results of some computations for a chute without aeration, and with rather a 
rough base plate, corresponding to S = 15". Other parameters were g5 = 28.5', 
e = 0.91, while the values of FT, P and N matched those in table 1. Figure 2 shows 
the calculated dimensionless mass flow rate, defined by 

i f H  

as a function of the dimensionless depth, H l d ,  for an angle of inclination of 18". 
Results are shown for two pairs of values of the wall parameters e, and #', namely 
(0.8,0.6) and (0.85,0.45), and the difference is striking. For the former pair of values 
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FIGURE 3. Profiles of (a )  volume fraction, ( 6 )  particle temperature and ( c )  velocity for the rough- 
based chute without aeration at H / d  = 15. Conditions correspond to the marked points in figure 

, El. 2 :  - 0 .  __-  A.  _._._ , ,  7 1  

m simply increases monotonically with H l d ,  as might be expected intuitively. For 
the latter pair, on the other hand, the flow rates are larger, and there are three widely 
spaced branches of solutions. The nature of these solutions can be seen in figure 3, 
which shows profiles of volume fraction, particle temperature, and velocity in the 
flowing layer for each of the three branches a t  a common value of the depth of the 
flowing layer, namely H / d  = 15. 

These quite modest changes in the values of the parameters $' and e ,  have changed 
the form of the flow rate curves completely, so i t  is interesting to investigate further 
the effect of varying these parameters. Figures 4 and 5 show the effect on the mass 
flow rate of varying the parameters e ,  and $', respectively. In  figure 4 the 
dependence of m on e ,  is plotted for $' = 0.60 and for $' = 0.45. For $' = 0.60 the 
results are not at all sensitive to  the value of e,, but for $' = 0.45 there is a range of 
values of e ,  over which the flow rate is very sensitive to this parameter, and multiple 
steady states exist. The multiplicity seen in figure 2 belongs to this range. In  figure 
5 ,  where m is plotted against $' for e ,  = 0.85, a similar phenomenon is observed. 
There is a range of values of $' over which the flow rate is very sensitive to this 
parameter, and multiple steady states exist. The situation is, therefore, complicated 
and we do not know which branches represent stable states when there is 
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FIGURE 4. Dependence of mass flow rate on the choice of value for e,. Other parameter values 
as for figure 2, and H/d = 15. 
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FIGURE 5. Dependence of mass flow rate on the choice of value for $'. Other parameter values 

as for figure 2, and H l d  = 15, e, = 0.85. 

multiplicity. The system may, or may not be sensitive to the value of a particular 
parameter, depending on the values taken by other parameters, and in view of figures 
4 and 5 it would be unwise to make any general speculations about the form of curves 
showing the flow rate as a function of depth. 

6. Experimental results and comparison with theory 
The theory refers to a chute of infinite width normal to the direction of flow, while 

the separation of the lateral bounding walls of the experimental chute is only 6 cm, 
as noted above, so there is some doubt about whether the drag imposed on the 
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flowing material by the walls can be neglected. Some idea of the influence of the walls 
can be obtained by determining the velocity profile for the particles in the free upper 
surface of the flowing layer, using the fibre-optic probe mounted above the layer, 
with its tip just clear of the moving surface. A number of profiles were determined 
in this way, and figure 6 shows two of these, both for flows with aeration. In  each case 
the velocity profile shows little evidence of curvature over thc rather limited part of 
the width accessible to the probe, whose casing prevents it from being located close 
to a wall. However, in the case of a granular material, the absence of marked 
curvature in the transverse velocity profile is not a guarantee that wall effects are 
small, since the material can be moving en bloc, in which state it is capable of 
transmitting shear stress from the wall without showing any curvature of the 
velocity profile. 

Figures 7 and 8 show the main results of this work, namely experimental 
rneasuremcnts arid theoretical predictions of mass flow rate as a funrtion of depth, 
at four values of the chute inclination and,  for each value of the inclination, at 
various air flow rates. At the two higher values of thc inclination, such that 6 > 6 ,  
fully developed flow is possible even in the absence of aeration, but for the two lower 
values of the inclination, with 8 < S, there is no flow without aeration. In all the cases 
studied experimentally the mass flow rate increases monotonically with the depth of 
the flowing layer, and there is no indication of multiple states, in either the 
measurements or the theoretical predictions. (However, we have seen earlier that  the 
theory certainly predicts multiplicity for other combinations of parametcr values.) 
For a given depth the flow is also increased substantially by increasing the aeration 
rate, this enhancement becoming larger as H / d  is increased. From a practical point 
of view the most important effect of aeration is to permit flow at smaller inclinations 
than could be used without aeration. Figure 7(c )  shows that less than half the 
theoretical flow of air for minimum fluidization is needed to give steady flows at an 
inclination of 1 3 O ,  but when this is reduced to 10" enough air for complete fluidization 
is needed to mobilize the material fully. 

I n  figures 7 (ad) the curves showing the thcoretical predictions were computed 
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FIGURE 7 .  Mass flow rate versus H / d  for the aerated chute at an inclination of ( a )  17", ( b )  16", (c) 
13" and (d )  lo", and the indicated aeration rates. Theoretical curves for parameter values in table 
1 with d' = 0.2. 

using parameter values from table 1, with $' = 0.2, and the agreement between 
theory and observations is reasonably good except at 8 = lo", where the flow rates 
are underestimated by about a factor of two. The qualitative behaviour predicted 
corresponds to that observed, with the flow for each aeration rate increasing 
monotonically with depth, and the curves for different aeration rates fanning out as 
the depth increases. However, the quantitative success of the predictions should not 
be taken too seriously. As shown in figure 8, if the value assumed for $' is changed 
from 0.2 to  0.6, the measured flow rates are underestimated by a wide margin, though 
their qualitative features are still predicted correctly. Though the results are not 
presented here, corresponding computations with $' = 0.6 for the othcr values of the 
chute inclination also show comparable underestimation of the flow rate. 
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FIGURE 8. Mass flow rate versus H l d  for the aerated chute a t  an inclination of 17" and the 
indicated aeration rates. Theoretical curves for parameter values in table 1 with q5' = 0.6. 
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FIQURE 9. Mass holdup versus H l d  for the aerated chute a t  an inclination of 17" and the indi- 
cated aeration rates. Also shown is the straight line through the origin which best fits all the data. 

For each run the mass holdup Mh was measured by the method described above. 
The measurements are regarded as less reliable than those of the depth, H ,  because 
the sliding plates used to  measure the holdup were placed quite close to the end of 
the chute, where exit effects were sometimes clearly significant. This was most 
serious a t  small chute inclinations, where the exit length was founded to be longest, 
so results are reported only for the largest inclination, 0 = 17". These are presented 
in figure 9 as a plot of the dimensionless holdup mh = Mh/ WLdp a ainst Hid, where 
W is the width of the chute and L the distance between the sliding plates used to 
measure the holdup. The ratio of mh to H/d is equal to  v ,  the mean volume fraction 

9 . g  



Frictional-collisional equations of motion for granular materials 141 

Y 

V T* 

U* = 0.57 _ -  
_ _  _ _  _ _  - 0.94 

U* 

FIGURE 10. Profiles of (a) volume fraction, ( b )  particle temperature and (c) velocity for the aerated 
chute at an inclination of 1 6 O ,  with H / d  = 15, and at the indicated aeration rates. Parameter values 
as in table 1 ,  with q5' = 0.2. 

of solids in the flowing layer, so the fact that the data are well represented by a single 
straight line through the origin shows that the mean volume fraction is essentially 
indepndent of the flow rate and the aeration rate for a chute of this inclination. The 
slope of the best line, shown in the diagram, is 0.38, and this gives the average value 
of v. It is clear from these results that the effect of aeration is not to expand the 
particulate material, but to relieve the buildup of stress within the layer due to the 
weight of the overburden. Correspondingly, the plots of mass flow rate versus depth 
show that the depth of the flowing layer decreases as the aeration rate is increased, 
a t  a given value of the mass flow rate. 

Figures 10, 11 and 12 show some computed profiles of volume fraction, particle 
temperature and velocity at inclinations of 16", 13" and lo", respectively, for aerated 
flows. From figure 10, a t  the lower aeration rate the material is seen to move as a 
block, with volume fraction approximately 0.58, supcrimposed on a relatively thin 
layer of shearing material in contact with the base of the chute. The particle 
temperature decreases monotonically on moving up  from the base, showing that 
pseudothermal energy is being generated as the material slips over the base, then 
conducted upward through the flowing layer. A t  the higher aeration rate particle 
temperatures are a good deal higher, the shearing zone adjacent to the base now 
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FIGURE 11. Profiles of (a) volume fraction, ( b )  particle temperature and (c) velocity for the aerated 
chute at an inclination of 13", with H / d  = 15, and at the indicated aeration rates. Parameter values 
as in table 1, with qY = 0.2. 

extends upward through about half the total depth, and the volume fraction of solids 
is reduced substantially in this shearing zone. Figure 11 shows a similar pattern of 
behaviour, but a t  this lower inclination velocities are smaller, particle temperatures 
are lower, and the shearing zone of reduced bulk density is now confined to a thinner 
layer adjacent to the base. The reduction in bulk density within that zone is also 
quite small. At 10' inclination figure 12 shows that essentially the whole flowing layer 
is in plug flow. The shearing layer adjacent to the base still exists, but is too thin to 
show up in the plotted velocity profiles, though a hint of its presence can be seen in 
the small reduction of bulk density very close to the base. As might be expected, 
particle temperatures are now quite low, with thermal activity confined to the lower 
part of the layer. These results are all in accord with what would be expected from 
earlier work on unaerated chutes (Johnson et al. 1990), together with the anticipated 
effects of aeration. 

7. Concluding remarks 
The theoretical treatment is based on equations of motion which are incomplete in 

a number of ways, and certain aspects of the particular boundary-value problem 
studied have also been neglected. As emphasized from the beginning, the rheological 



1 .o 

0.8 

0.6 

Y 
0.4 

0.2 

0 
0 

V 

1 .o 

0.8 

0.6 
Y 

0.4 

0.2 

Frictional-collisional equations of motion for granular materials 

1 .o 

0.8 

0.6 

Y 
0.4 

0.2 

0 
10-3 10-2 10-1 

T* 

If == 
- - - - 0.6 

143 

10 

0 0.5 1 .o 1.5 
U* 

FIGURE 12. Profiles of (a) volume fraction, (b)  particle temperature and (c) velocity for the aerated 
chute at an inclination of loo, with H / d  = 15, and at an aeration rate v* = 1.05. Curves correspond 
to the two indicated values of $’. 

model used for stress in the flowing particulate material is no more than a naive 
additive combination of two quite disparate limiting cases, one drawn from soil 
mechanics for the behaviour at high bulk density and slow shear rate, the other based 
in kinetic theory for the behaviour at  lower density and higher shear rate. In 
addition, the only aspect of the interaction of the particles with the interstitial air 
that has been taken into account is a drag force depending on their relative 
convective velocities. It is also clear that the presence of theinterstitial air influences 
the nature of collisions between particles, and it is known that the pseudo-thermal 
random component of the particle motion may either draw energy from the resulting 
motion relative to the air, or be damped by losing energy. All these effects have been 
neglected. Furthermore, and particular to the geometry of the problem considered, 
the presence of lateral bounding walls has been neglected, aa has the drag exerted on 
the particles as they accelerate the air entering through the porous plate. 

On the experimental side, though all the parameters appearing in the equations of 
motion can, in principle, be measured by independent experiments, we have seen 
that this is not always easy. In  particular, we lack any independent value for the 
specularity coefficient 4’ appearing in the momentum boundary condition at the wall, 
and there is really no parameter whose value has been found with adequate precision. 
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This is unfortunate since, as we have shown, the results can be very sensitive to 
certain parameter values over limited ranges of operating conditions. Nevertheless, 
accepting the best independent measurements we have for all the parameters other 
than $‘, it has been shown that the correct qualitative behaviour is predicted for two 
widely different values of q4‘, one of which also gives quite good quantitative 
predictions. 

The results clearly indicate that the properties of the solid boundary play a very 
important role in determining the nature of the flow. The boundary may act as a 
source or sink of pseudo-thermal energy, and the sign and magnitude of this energy 
flux is sensitive to the values of the parameters e ,  and 4’. Changing the aeration rate 
within the limits we have studied does not dilate the flowing material very much, but 
it does increase the slip velocity a t  the boundary, and consequently the particle 
temperature throughout the flowing layer. The magnitudes of both shear and normal 
stresses are then reduced, and a higher proportion of these stresses is generated by 
the collisional, rather than the frictional mechanism. Thus, the investigation of shear 
flow has been extended by aeration to cases where the bulk density is high but the 
transmitted stresses are low ; a situation not easy to  realize in other ways, 
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